\bigoplus do

A MESOSCOPIC METHOD FOR SIMULATING ACTIVE-NEMATICS

Timofey Kozhukhov¹ , **Benjamín Loewe**¹, and **Tyler N. Shendruk**¹

¹ School of Physics and Astronomy, The University of Edinburgh

THE UNIVERSITY of EDINBURGH **School of Physics** & Astronomy

Motivation

- Mesoscopic algorithms bridge microscopic and continuum, particularly good for fluids with suspensions [1]
- Development of mesoscopic algorithms for active nematic fluids is lacking

Multi-Particle Collision Dynamics

- Particles stream ballistically then binned into grid cells
- Collision operators acting on cells encode dynamics

Active-Nematic MPCD

- $\alpha \lesssim \alpha^0$: MPCD absorbs active energy injection
- $\alpha^0 \lesssim \alpha \lesssim \alpha^*$: Scales faster than expected
- $\alpha^* \leq \alpha$: Expected scaling for active turbulence
- Start after nematic collision operator by Shendruk and Yeomans [2] is applied, labelled Ξ_i^0 i,c
- Force dipole added, producing Active-Nematic MPCD (AN-MPCD)

Active Turbulence: Defects

• Continuous pair creation & annihilation of $+1/2$ and $-1/2$ defects is a key feature

- AN-MPCD recreates active turbulence for $\alpha^* \lesssim \alpha$
- AN-MPCD exhibits density fluctuations [4]
- Can be applied to systems with complex solutes **References**

- of active turbulence
- $\alpha^* \lesssim \alpha$: Produces non-zero defect density ρ_d
- In this regime defect the scaling of seperation length scale $l_d = \rho_d^{-1/2}$ $\frac{1}{d}$ agrees with theory

Active Turbulence: Velocity

Three regimes:

Density Fluctuations

• In AN-MPCD these appear very similar to [3], another particle based algorithm

• Density distribution widens, and giant-number fluctuations at large α

Giant Number Fluctuations 25 1*.*0 0*.*9 *ν* 20 *σρ* $\sigma_{N_C} \sim \langle N_C \rangle^\nu$ GNF Scaling, Density SD, 0*.*8 15 0*.*7 α ⁻ 10 0*.*6 Equilibrium $0.5 -$ 5 10*[−]*⁴ 10*[−]*³ 10*[−]*² 10*[−]*¹ 10*[−]*⁴ 10*[−]*³ 10*[−]*² 10*[−]*¹ Activity, *α* Activity, *α*

Conclusion & Outlook

- 1. Wysocki, A., Winkler, R. G. & Gompper, G. Computational models for active matter. *Nature Reviews Physics* **2,** 181–199. ISSN: 2522-5820. http://dx.doi.org/10.1038/s42254-020-0152-1 (2020).
- 2. Shendruk, T. N. & Yeomans, J. M. Multi-particle collision dynamics algorithm for nematic fluids. *Soft Matter* **11,** 5101–5110. ISSN: 17446848. http://dx.doi.org/10.1039/C5SM00839E (2015).
- 3. Peshkov, A., Aranson, I. S., Bertin, E., Chaté, H. & Ginelli, F. Nonlinear field equations for aligning self-propelled rods. *Physical Review Letters* **109,** 1–5. ISSN: 00319007 (2012).
- 4. Kozhukhov, T., Loewe, B. & Shendruk, T. N. A Mesoscopic Method for Simulating Active-Nematics. *In Prep.* (2022).