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Motivation

• Mesoscopic algorithms bridge microscopic and continuum, and are particularly
good for simulating suspensions [1]

• Development of mesoscopic algorithms for active nematic fluids is lacking, leav-
ing many novel physics under-explored

Multi-Particle Collision Dynamics (MPCD)

• Particles i stream ballistically, then binned into grid cells

• Collision operators act on cells c, encoding system dynamics

• Particle based nature allows easy simulation of complex geometries and sus-
pensions

ri(t + δt) = ri(t) + vi(t)δt vi(t + δt) = vcmc (t) + Ξi,c

Active-Nematic MPCD (AN-MPCD)

• Utilises nematic collision operator by Shendruk and Yeomans [2], labelled Ξ0
i,c

• Results in a local force dipole, with cellular strength αc computed from particle
activity αi, locally injecting energy but conserving momentum [3]

Ξi,c = Ξ0
i,c + δt αc
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Active turbulence in AN-MPCD

AN-MPCD reproduces active turbulence [3] for a range of activities:

• Defect separation scales as ℓd ∼ αµ, µ = −0.52± 0.03

• Speed scales as vav ∼ αγ, γ = 0.45± 0.05
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Significant density fluctuations are found, especially at overly high activities:

• Density distributions widen, reflected in standard deviation σρ and non-
gaussianity measure χNGM
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Density modulation through activity

Modulate activity through dipole strength αc to reduce density variations [4]:

• Denote the original as active-sum, αSum
c

• Averaging active-sum by local density gives active-average, αAv
c

• Modulate αSum
c and αAv

c smoothly with density, using a sigmoidal width σw and
position σp parameter, giving sigmoidal sum αS−S

c and sigmoidal average αS−A
c

• Active-Sum: αSumc =
∑Nc

i=1αi

• Active-Average: αAvc = 1
Nc
αSumc

• Sigmoidally modulated through

σ(Nc;σw, σp) =
1

2

(
1− tanh

(
Nc − ⟨Nc⟩ (1 + σp)

⟨Nc⟩σw

))
giving:

– Sigmoidal-Sum αS−S
c = αSumc σ(Nc)

– Sigmoidal-Average αS−A
c = αAvc σ(Nc)

Activity modulation reduces variations

• All activity modulation techniques retain turbulence scalings

• Sigmoidal methods with σw = 0.1, σp = 0.5 are particularly effective:

– Number of empty cells and maximum instantaneous population drop
– Diffusion due to density gradients, proportional to |∇ρ|, remains constant for

larger activities
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Active films in AN-MPCD

• We use modulated AN-MPCD to study thin active films below an isotropic fluid
containing tracer particles, in collaboration with experimental work [5]

• Preliminary findings show flow and tracer speed decay above film
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• Further work will include studies of tracer particle structure within the flow, and
other geometries such as cylinders, spheres, and “active pools".

Conclusions and outlook

• AN-MPCD proves to be an exciting method to study active nematics with

– complex solutes (figures courtesy of L.H, Z.V.)
– confined geometries (figure courtesy of B.L.)

Future work will include studying soft deformable boundaries in AN-MPCD

• Deformable biointerfaces are a hallmark of living systems and AN-MPCD offers
a powerful method for studying their out-of-equilibrium dynamics


