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Motivation
• There has been much recent interest on the behaviour of solutes in active-nematic
turbulence [1, 2], which spontaneously produce pairs of advected −1/2 and self-
motile +1/2 defects.

• In passive systems (A = 0), strong nematic surface anchoring induces companion
topological defects [3].

• The interplay between strongly anchored colloidal particles and active nematic tur-
bulence has yet to be explored.

Solvent and solute model

• A two-dimensional extensile active-nematic solvent is simulated using AN-
MPCD [4], a technique which replicates fluctuating active nematic turbulence.

• Colloidal disks are modelled as rigid boundary conditions with strong nematic sur-
face anchoring that are free to move within the solvent [5].

• The effect of varying the colloidal radius RC and the active length scale ℓα is quan-
tified through a dimensionless activity number A, defined as

A =
πR2

C

π
(
ℓα

2 + 2RCℓα
) ∼ R2

C

ℓα
2.

Activity enhanced diffusion

• Differences in colloidal motility can be quantified through the mean squared dis-
placement (MSD)

〈
∆r2

〉
of colloidal trajectories r(t). They can be compared

through a common MSD model of self-propelled particles〈
∆r2

〉
(δt) = 2dDeffδt− 2v20τ

2
r (1− e−δt/τr) ; Deff = D + v20τr/d,

where d is the dimensionality, Deff is an effective diffusion coefficient that includes
passive Brownian diffusion D, the instantaneous self-propulsion speed v0, and the
reorientation time τr.

• The instantaneous speed of the colloid v0 increases with activity A, platauing for
A = A∗ ≃ 0.67. Likewise, the relative diffusion Deff/D = 1 + Dα/D observes a
similar trend, but with a local maxima at A = A∗.

• However, unanchored colloids exhibit smaller speeds, and do not exhibit local max-
ima in the effective diffusion, which is instead monotonic.
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Changes in topological surroundings

• The radial distribution function (RDF) of −1/2 defects describes the distribution of
defects around the colloid.

• At low activities, the RDF exhibits a peak at short distances, indicative of compan-
ion defects. As activity rises towards A∗, companion defects become indistinguish-
able, becoming more homogeneously distributed akin to a gas.

• Unlike the passive case, where there are 2 companion defects, low activities exhibit
1 companion on average. For A ≳ A∗, the number of companions rises.
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Radial symmetry breaking

• This single remaining companion defect is found to lie behind the colloid, relative
to the direction of motion.

• This leaves a colloid-companion complex with an effective +1/2 charge, which
suggests it should be self-motile.

• However, the director pattern of this complex is in the opposite direction to the
colloid’s motion, inconsistent with +1/2 defects.

Mechanism for enhanced diffusion

• Rather than the net charge of the colloid-companion complex, the enhanced motil-
ity of the colloid is attributed to the interplay between the complex and surrounding
+1/2 defects.

•+1/2 defects are attracted to the remaining companion defect, but are deflected
due to the elastic forces from colloidal anchoring. The resulting flow fields push
the colloid-companion complex away, resulting in enhanced motility.

Conclusions and outlook

• We have revealed a novel mechanism for the enhanced motility of strongly an-
chored colloids in active turbulence, dependent on a dimensionless activity num-
ber that compares the colloidal radius to the active length scale.

• For low activities A ≲ A∗, colloids exhibit enhanced motility and non-monotonic
diffusion due to +1/2 defects deflected by elastic forces.

• At higher activities A ≳ A∗, the homogeneous topological surroundings of the col-
loid balances any net flow from incoming +1/2 defects, saturating ballistic speed
and decreasing effective diffusion.

• This work begins to extend the rich dynamics of anchored colloidal suspensions
in passive nematics to active turbulence, opening the door to using colloids as a
means of manipulating and controlling defect behaviour in active systems.

View movies at
www.kozhukhov.co.uk
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