Active Flows using Multi-Particle Collision Dynamics
DSFD 2023
Timofey Kozhukhov
, Benjamin Loewe, Tyler N. Shendruk (
t.shendruk@ed.ac.uk
)
$\definecolor{saphire}{RGB}{0, 50, 95}$ $\definecolor{crimson}{RGB}{193, 0, 67}$ $\definecolor{capri}{RGB}{0, 196, 223}$ $\definecolor{amber}{RGB}{244, 170, 0}$ $\definecolor{plum}{RGB}{129, 2, 98}$ $\definecolor{cerulean}{RGB}{0, 145, 181}$ $\definecolor{ruby}{RGB}{212, 0, 114}$ $\definecolor{cardinal}{RGB}{172, 0, 64}$ $\definecolor{ccinnamon}{RGB}{205, 90, 19}$ $\definecolor{climegreen}{RGB}{41, 188, 41}$ $\definecolor{cgold}{RGB}{141, 116, 74}$ $\definecolor{ctaupe}{RGB}{110, 80, 72}$ $\definecolor{cteal}{RGB}{69, 126, 129}$ $\definecolor{cforestgreen}{RGB}{0, 70, 49}$ $\definecolor{cmahogany}{RGB}{106, 51, 40}$ $\definecolor{csilver}{RGB}{194, 211, 223}$ $\definecolor{coldrose}{RGB}{184, 133, 141}$ $\definecolor{curry}{RGB}{156, 154, 0}$ $\definecolor{cobalt}{RGB}{0, 80, 114}$ $\definecolor{rubydarker}{RGB}{197, 0, 99}$ $\definecolor{purple}{RGB}{56, 6, 92}$ $\definecolor{cardinaldarker}{RGB}{97, 0, 36}$ $\definecolor{ceruleandarker}{RGB}{0, 113, 140}$ $\definecolor{amberlighter}{RGB}{240, 191, 79}$ $\definecolor{amberbrighter}{RGB}{245, 242, 88}$ $\definecolor{onyx}{RGB}{15, 15, 15}$
Active matter ranges across scales
Individual
"active" units
Absorb
energy
from environment
Energy used to
locomote
But what about the mesoscale?
Youtube: Wonders in the sky (2015)
Henkes S,
et al.
, Phys. Rev. E, 2011
Rivas D,
et al.
, Soft Matter, 2020
Sokolov A,
et al.
, Phys. Rev. X, 2019
Active matter at the mesoscale is numerically under-explored
Thijssen K, Khaladj D,
et al.
, PNAS, 2021
Drechsler M,
et al.
, Mol Biol Cell, 2020
Ray S,
et al.
, Phys. Rev. Lett., 2023
Why?
Multi-Particle Collision Dynamics (MPCD)
Streaming: $\vec{x}_i(t+\delta t) = \vec{x}_i(t) + \vec{v}_i(t)\delta t$
Collision: $\vec{v}_i(t+\delta t) = \vec{v}_{CM}(t) + \vec\Xi_i(\vec{r}_\mathrm{CM}, t)$
Shendruk T, Yeomans J M, Soft Matter, 2015
A planar collision rule induces local force dipoles
$\Xi_i^\mathrm{Active} = \Xi_i^{N}$
${\color{ruby} {+ \alpha_C \delta t \left( \frac{\kappa_i}{m_i} - \langle \frac{\kappa_j}{m_j} \rangle_C \right) \vec{n}_C} ; \quad \alpha_C = \sum_i^{\rho_C}\alpha_i} $
Kozhukhov T, Shendruk T, Sci. Adv., 2022
Active-Nematic MPCD Reproduces Active Turbulence
Rivas D,
et al.
, Soft Matter, 2020
$\alpha = 0.1$. Turbulence regime: $\alpha > 0.025$
Kozhukhov T, Shendruk T, Sci. Adv., 2022
Strategy: Modulate local activity
$\Xi_i^{Active} = \Xi_i^{N}+ {\alpha_C} \delta t \left( \frac{\kappa_i}{m_i} - \langle \frac{\kappa_j}{m_j} \rangle_C \right) \vec{n}_C $
Active Sum
: $\alpha_C^\mathrm{S} = \alpha \rho_C$
Active Average
: $\alpha_C^\mathrm{A} = \alpha$
$\mathcal{S}_C(\rho_C; \sigma_p, \sigma_w) = \frac{1}{2} \left( 1 - \tanh \left( \frac{\rho_C - \av{\rho_C} \left( 1 + \sigma_p \right)}{\av{\rho_C} \sigma_w} \right) \right)$
Sigmoidal Av.
: $\alpha_C^\mathrm{S-A}(\rho_C) = \alpha_C^\mathrm{A} \mathcal{S}_C(\rho_C)$
Sigmoidal Sum
: $\alpha_C^\mathrm{S-S}(\rho_C) = \alpha_C^\mathrm{S} \mathcal{S}_C(\rho_C)$
Kozhukhov T, Shendruk T, Sci. Adv., 2022
Kozhukhov T, Loewe B, Shendruk T,
in prep.
Active Sum
Active Av.
Sigmoid Sum
($\sigma_p=0.4, \sigma_w=0.5$)
Sigmoid Av.
($\sigma_p=0.4, \sigma_w=0.5$)
$\alpha = 0.1$
Active Sum
Active Av.
Sigmoid Sum
($\sigma_p=0.4, \sigma_w=0.5$)
Sigmoid Av.
($\sigma_p=0.4, \sigma_w=0.5$)
$\alpha = 0.1$
Modulated AN-MPCD reproduces active turbulence
$\ell_d = \rho_d^{-1/2}$; Theory: $\ell_d \propto \alpha^{-1/2}$
Theory: $v \propto \alpha^{1/2}$
Modulations reduce density-induced drift
Fick's law: Density-induced drift $\propto \left| \nabla \rho \right|$
$\alpha=0.1$
$\chi_\mathrm{NGM}=\frac{d}{d+2} \frac{\Delta r^4}{|\Delta r^2|^2}-1$
Applications of mesoscale AN-MPCD
Louise Head
Related:
arXiv:2306.05328
, Submitted 2023
Active Av.
Applications of mesoscale AN-MPCD
Ryan Keogh
Keogh R,
et al.
, Submitted 2023
Active Av.
Applications of mesoscale AN-MPCD
Zahra Valei
Valei Z,
et al.
,
In prep.
2023
Sigmoidal Av.
Applications of mesoscale AN-MPCD
Benjamín Loewe
Active Sum
Applications of mesoscale AN-MPCD
Kira Koch
Sigmoidal Av.
Conclusions
A force dipole is sufficient to reproduce active turbulence in MPCD
Density dependent activity modulation reduces density fluctuations
AN-MPCD is a strong framework to simulate out of equilibrium mesoscale systems
Contacts:
t.shendruk@ed.ac.uk
,
t.kozhukhov@sms.ed.ac.uk
View this talk online at
www.Kozhukhov.co.uk/
Acknowledgements
Tyler N. Shendruk
Benjamín Loewe
Kristian Thijssen
Ryan Keogh
Jack Paget
Louise Head
Zahra Valei
François de Tournemire
Oleksandr Baziei
Kira Koch
Appendix Slides
Sig-Av. Sig-Sum very similar. Chosen params are $\sigma_p=0.4, \sigma_w=0.5$
Modulations reduce density fluctuations
Modulations reduce density band width
Giant number fluctuations analysis reveal algorithm regimes
Central Limit Theorem: $\sigma_{N_C}\propto \langle N_C \rangle^{1/2}$
$\sigma_{N_C}=A\langle N_C \rangle^\nu$
$A=\sigma_{N_C}|_{\langle N_C \rangle=1}$