Active Flows using Coarse-Grained Numerical Methods
ICMCS, 25th September, 2023
Timofey Kozhukhov
(
t.kozhukhov@sms.ed.ac.uk
), Tyler N. Shendruk (
t.shendruk@ed.ac.uk
)
View these slides online at
www.Kozhukhov.co.uk/
$\definecolor{saphire}{RGB}{0, 50, 95}$ $\definecolor{crimson}{RGB}{193, 0, 67}$ $\definecolor{capri}{RGB}{0, 196, 223}$ $\definecolor{amber}{RGB}{244, 170, 0}$ $\definecolor{plum}{RGB}{129, 2, 98}$ $\definecolor{cerulean}{RGB}{0, 145, 181}$ $\definecolor{ruby}{RGB}{212, 0, 114}$ $\definecolor{cardinal}{RGB}{172, 0, 64}$ $\definecolor{ccinnamon}{RGB}{205, 90, 19}$ $\definecolor{climegreen}{RGB}{41, 188, 41}$ $\definecolor{cgold}{RGB}{141, 116, 74}$ $\definecolor{ctaupe}{RGB}{110, 80, 72}$ $\definecolor{cteal}{RGB}{69, 126, 129}$ $\definecolor{cforestgreen}{RGB}{0, 70, 49}$ $\definecolor{cmahogany}{RGB}{106, 51, 40}$ $\definecolor{csilver}{RGB}{194, 211, 223}$ $\definecolor{coldrose}{RGB}{184, 133, 141}$ $\definecolor{curry}{RGB}{156, 154, 0}$ $\definecolor{cobalt}{RGB}{0, 80, 114}$ $\definecolor{rubydarker}{RGB}{197, 0, 99}$ $\definecolor{purple}{RGB}{56, 6, 92}$ $\definecolor{cardinaldarker}{RGB}{97, 0, 36}$ $\definecolor{ceruleandarker}{RGB}{0, 113, 140}$ $\definecolor{amberlighter}{RGB}{240, 191, 79}$ $\definecolor{amberbrighter}{RGB}{245, 242, 88}$ $\definecolor{onyx}{RGB}{15, 15, 15}$
Table of contents
Introduction & Motivation
Mesoscopic simulation techniques &
Multi-Particle Collision Dynamics (MPCD)
Active Nematic (AN-) MPCD
Modulated AN-MPCD
Applications of AN-MPCD
Conclusion
Active matter ranges across scales
Individual
"active" units
Local
energy injection from environment
Energy used to
locomote
Youtube: Wonders in the sky (2015)
Rivas D,
et al.
, Soft Matter, 2020
Microtubule bundle systems are active nematics
Rivas D,
et al.
, Soft Matter, 2020
Active
Nematic
Microtubule bundle systems are active nematics
Rivas D,
et al.
, Soft Matter, 2020
+1/2
-1/2
Mesoscale active matter has seen rapid recent progress
Thijssen K, Khaladj D,
et al.
, PNAS, 2021
Drechsler M,
et al.
, Mol Biol Cell, 2020
Ray S,
et al.
, Phys. Rev. Lett., 2023
Table of contents
Introduction & Motivation
Mesoscopic simulation techniques &
Multi-Particle Collision Dynamics (MPCD)
Active Nematic (AN-) MPCD
Modulated AN-MPCD
Applications of AN-MPCD
Conclusion
Active matter simulation methods exist across scales
Microscopic
Vliegenthart G,
et al.
, Sci. Adv., 2020
Macroscopic
Sokolov A,
et al.
, Phys. Rev. X, 2019
Mesoscale methods for this subset of active systems are limited
Our requirements:
Includes hydrodynamic interactions
Suitable for complex geometries & boundaries
Moderate Peclet number
Suitable for wide variety of active systems
MD
MD
DPD
DPD
MPCD
MPCD
LB
LB
Stokesian Dyn.
Stokesian Dyn.
Langevin Dyn.
Langevin Dyn.
What is Multi-Particle Collision Dynamics (MPCD)?
Particle $i$ has:
Position $\vec x_i$
Velocity $\vec v_i$
Mass $m_i$
Cell $C$ has:
Population $\rho_C$
CoM velocity $\vec v_{CM}$
Moment of intertia $I_C$
Streaming: $\vec{x}_i(t+\delta t) = \vec{x}_i(t) + \vec{v}_i(t)\delta t$
Collision:
$\vec{v}_i(t+\delta t) = \vec{v}_{CM}(t) + \vec\Xi_i(\vec{r}_\mathrm{CM}, t)$
$\vec{v}_i(t+\delta t) = \vec{v}_{CM}(t) + \textcolor{crimson}{\vec\Xi_i(\vec{r}_\mathrm{CM}, t)}$
The collision operator controls the material properties
A collision operator $\textcolor{crimson}{\vec \Xi_C}$ acting on cell $C$ must:
Include some stochasticity
Respect conservation laws (linear momentum, etc)
Exchange particle properties (velocities, etc)
Angular momentum conserving Andersen collision operator:
$ \color{crimson}{\Xi_i^{A}} $
$ = \color{cerulean}\underline{\color{black}\vec\xi_i(t) } $
$ - \color{crimson}\underline{\color{black}\langle \vec\xi\rangle_{N_C} } $
$ + \color{amber}\underline{\color{black}{(I_C^{-1}\cdot \delta L_C ) \times \vec{r}_i}} $
where $\delta L_C$ is the angular momentum change
François de Tournemire
Modifying collision operators simulates new materials
Particle $i$ has:
Position $\vec x_i$
Velocity $\vec v_i$
Mass $m_i$
Orientation $\vec u_i$
Cell $C$ has:
Population $\rho_C$
CoM velocity $\vec v_{CM}$
Moment of inertia $I_C$
Local director $\vec n_C$
Velocity collision: $\vec{v}_i(t+\delta t) = \vec{v}_{CM}(t) + \textcolor{crimson}{\vec\Xi_i(\vec{r}_\mathrm{CM}, t)}$
Orientation collision: $\vec{u}_i(t+\delta t) = \vec{n}_C(t) + \textcolor{cerulean}{\vec{\eta}_i(t)}$
$\textcolor{cerulean}{\vec{\eta}_i}$ orientation drawn from a Maier-Saupe distribution
\[ \begin{align*} \textcolor{crimson}{\Xi_i^{N}} &= \textcolor{crimson}{\Xi_i^{A}} + (I_C^{-1}\cdot \delta \mathcal{L}_C) \times \vec{r}_i \end{align*} \]
Shendruk T, Yeomans J, Soft Matter 2015
Simple changes to collision operators give nematic behaviour
Shendruk T, Yeomans J, Soft Matter 2015
Table of contents
Introduction & Motivation
Mesoscopic simulation techniques &
Multi-Particle Collision Dynamics (MPCD)
Active Nematic (AN-) MPCD
Modulated AN-MPCD
Applications of AN-MPCD
Conclusion
Local force dipoles are necessary for an active-nematic
Rivas D,
et al.
, Soft Matter, 2020
A planar collision rule induces local force dipoles
$\Xi_i^\mathrm{Active} = \Xi_i^{N}$
${ + \alpha_C \delta t \left( \frac{\kappa_i}{m_i} - \langle \frac{\kappa_j}{m_j} \rangle_C \right) \vec{n}_C } ; \quad \alpha_C = \sum_i^{\rho_C}\alpha_i $
$\textcolor{crimson}{ = \alpha_C^\mathrm{S}}$
Cellular activity $\alpha_C$ - Local force magnitude
Kozhukhov T
, Shendruk T, Sci. Adv., 2022
Activity magnitude changes algorithm regime
$\alpha < \alpha_\text{eq} = 10^{-3}$
$10^{-3} = \alpha_\text{eq} < \alpha < \alpha_\text{turb} = 2.5\times 10^{-2}$
$\alpha > \alpha_\text{turb} = 2.5\times 10^{-2}$
Kozhukhov T
, Shendruk T, Sci. Adv., 2022
Active-Nematic (AN-) MPCD Reproduces Active Turbulence
Rivas D,
et al.
, Soft Matter, 2020
Kozhukhov T
, Shendruk T, Sci. Adv., 2022
AN-MPCD turbulence begins from high bend walls
AN-MPCD succesfully reproduces active turbulence
$\ell_d = \rho_d^{-1/2}$; Theory: $\ell_d \propto \alpha^{-1/2}$
Theory: $v \propto \alpha^{1/2}$
For $\alpha > \alpha_\text{turb} = 2.5\times 10^{-2}$
Kozhukhov T
, Shendruk T, Sci. Adv., 2022
Active particle model results in density fluctuations
Kozhukhov T
, Shendruk T, Sci. Adv., 2022
Activity accumulates particles and widens distributions
Suggests an upper limit for effective turbulence regime of $\alpha_\dagger$
Kozhukhov T
, Shendruk T, Sci. Adv., 2022
Increased activity results in giant number fluctuations
Central Limit Theorem: $\sigma_{N_C}\propto \langle N_C \rangle^{1/2}$
$\sigma_{N_C}=A\langle N_C \rangle^\nu$
Kozhukhov T
, Shendruk T, Sci. Adv., 2022
Summary on AN-MPCD
A simple planar collision rule applies a force dipole
Built-in thermostat sets a minimum activity for turbulence
Within the turbulence regime, active turbulence scales per theoretical expectations
$\alpha > \alpha_\text{turb} = 2.5\times 10^{-2}$
However has large density fluctuations, common to active particle models
This is problematic for simulation of solutes
Table of contents
Introduction & Motivation
Mesoscopic simulation techniques &
Multi-Particle Collision Dynamics (MPCD)
Active Nematic (AN-) MPCD
Modulated AN-MPCD
Applications of AN-MPCD
Conclusion
Strategy: Modulate local activity
$\Xi_i^{Active} = \Xi_i^{N}+ {\alpha_C} \delta t \left( \frac{\kappa_i}{m_i} - \langle \frac{\kappa_j}{m_j} \rangle_C \right) \vec{n}_C $
Active Sum (Original)
: $\alpha_C^\mathrm{S} = \alpha \rho_C$
Active Average
: $\alpha_C^\mathrm{A} = \alpha$
$\mathcal{S}_C(\rho_C; \sigma_p, \sigma_w) = \frac{1}{2} \left( 1 - \tanh \left( \frac{\rho_C - \av{\rho_C} \left( 1 + \sigma_p \right)}{\av{\rho_C} \sigma_w} \right) \right)$
Sigmoidal Av.
: $\alpha_C^\mathrm{S-A}(\rho_C) = \alpha_C^\mathrm{A} \mathcal{S}_C(\rho_C)$
Sigmoidal Sum
: $\alpha_C^\mathrm{S-S}(\rho_C) = \alpha_C^\mathrm{S} \mathcal{S}_C(\rho_C)$
Kozhukhov T
, Shendruk T, Sci. Adv., 2022
Kozhukhov T
, Loewe B, Shendruk T,
in prep.
Active Sum
Active Av.
Sigmoid Sum
($\sigma_p=0.4, \sigma_w=0.5$)
Sigmoid Av.
($\sigma_p=0.4, \sigma_w=0.5$)
$\alpha = 0.1$
Kozhukhov T
, Loewe B, Shendruk T,
in prep.
Active Sum
Active Av.
Sigmoid Sum
($\sigma_p=0.4, \sigma_w=0.5$)
Sigmoid Av.
($\sigma_p=0.4, \sigma_w=0.5$)
$\alpha = 0.1$
Kozhukhov T
, Loewe B, Shendruk T,
in prep.
Modulation results in energy input fluctuations
Active Sum
: $\alpha_C^\mathrm{S} = \alpha \rho_C$
Active Average
: $\alpha_C^\mathrm{A} = \alpha$
Sigmoidal Sum
: $\alpha_C^\mathrm{S-S}(\rho_C) = \alpha_C^\mathrm{S} \mathcal{S}_C(\rho_C)$
Sigmoidal Av.
: $\alpha_C^\mathrm{S-A}(\rho_C) = \alpha_C^\mathrm{A} \mathcal{S}_C(\rho_C)$
Kozhukhov T
, Loewe B, Shendruk T,
in prep.
Modulated AN-MPCD reproduces active turbulence
$\ell_d = \rho_d^{-1/2}$; Theory: $\ell_d \propto \alpha^{-1/2}$
Theory: $v \propto \alpha^{1/2}$
Kozhukhov T
, Loewe B, Shendruk T,
in prep.
Modulation results in improved density distributions
Kozhukhov T
, Loewe B, Shendruk T,
in prep.
Modulations reduce density band width
Kozhukhov T
, Loewe B, Shendruk T,
in prep.
Modulations reduce density-induced drift
Fick's law: Density-induced drift $\propto \left| \nabla \rho \right|$
$\alpha=0.1$
$\chi_\mathrm{NGM}=\frac{d}{d+2} \frac{\Delta r^4}{|\Delta r^2|^2}-1$
Kozhukhov T
, Loewe B, Shendruk T,
in prep.
Giant number fluctuation analysis reveal algorithm regimes
$\sigma_{N_C}=A\langle N_C \rangle^\nu$
$A=\sigma_{N_C}|_{\langle N_C \rangle=1}$
Kozhukhov T
, Loewe B, Shendruk T,
in prep.
Table of contents
Introduction & Motivation
Mesoscopic simulation techniques &
Multi-Particle Collision Dynamics (MPCD)
Active Nematic (AN-) MPCD
Modulated AN-MPCD
Applications of AN-MPCD
Conclusion
Applications of mesoscale AN-MPCD
Louise Head
Active Av.
D.P.Rivas,
L.C.Head
, D.H.Reich, T.N.Shendruk, R.L.Leheny,
in prep.
, 2023
Applications of mesoscale AN-MPCD
Zahra Valei
Sigmoidal Sum
Applications of mesoscale AN-MPCD
Ryan Keogh
Active Av.
Keogh R
,
Kozhukhov T
,
et al.
, Submitted 2023
Applications of mesoscale AN-MPCD
Kira Koch
Mark Curtis-Rose
Sigmoidal Av.
Applications of mesoscale AN-MPCD
Benjamín Loewe
Humberto Híjar
Loewe B
, Shendruk T, NJP 2022
Active Sum
Related:
Marcias-Duran E,
et al.
, Soft Matter, 2023
Applications of mesoscale AN-MPCD
Benjamín Loewe
Positive overcharge
Negative overcharge
Active Av.
Loewe B
, Shendruk T,
in prep.
Summary
A force dipole reproduces active turbulence for sufficient activity
$\alpha > \alpha_\text{turb} \simeq 2.5\times 10^{-2}$
Density dependent activity modulation reduces density fluctuations
Sigmoidal Av.
for general use
Sigmoidal Sum
for minimising low density regions
AN-MPCD provides a strong framework to simulate out of equilibrium mesoscale systems
t.shendruk@ed.ac.uk
,
t.kozhukhov@sms.ed.ac.uk
View these slides online at
www.Kozhukhov.co.uk/
Acknowledgements
Tyler N. Shendruk
Benjamín Loewe
Ryan Keogh
Jack Paget
Louise Head
Humberto Híjar
Zahra Valei
François de Tournemire
Oleksandr Baziei
Kira Koch
Mark Curtis-Rose
Kristian Thijssen
Appendix Slides
Above is for Sig-Av. Sig-Sum very similar.
Chosen params are $\sigma_p=0.4, \sigma_w=0.5$