Active Flows using Coarse-Grained Numerical Methods
NBIA, 11th April, 2024
Timofey Kozhukhov
(
t.kozhukhov@sms.ed.ac.uk
), Tyler N. Shendruk (
t.shendruk@ed.ac.uk
)
View these slides online at
www.Kozhukhov.co.uk/
$\definecolor{saphire}{RGB}{0, 50, 95}$ $\definecolor{crimson}{RGB}{193, 0, 67}$ $\definecolor{capri}{RGB}{0, 196, 223}$ $\definecolor{amber}{RGB}{244, 170, 0}$ $\definecolor{plum}{RGB}{129, 2, 98}$ $\definecolor{cerulean}{RGB}{0, 145, 181}$ $\definecolor{ruby}{RGB}{212, 0, 114}$ $\definecolor{cardinal}{RGB}{172, 0, 64}$ $\definecolor{ccinnamon}{RGB}{205, 90, 19}$ $\definecolor{climegreen}{RGB}{41, 188, 41}$ $\definecolor{cgold}{RGB}{141, 116, 74}$ $\definecolor{ctaupe}{RGB}{110, 80, 72}$ $\definecolor{cteal}{RGB}{69, 126, 129}$ $\definecolor{cforestgreen}{RGB}{0, 70, 49}$ $\definecolor{cmahogany}{RGB}{106, 51, 40}$ $\definecolor{csilver}{RGB}{194, 211, 223}$ $\definecolor{coldrose}{RGB}{184, 133, 141}$ $\definecolor{curry}{RGB}{156, 154, 0}$ $\definecolor{cobalt}{RGB}{0, 80, 114}$ $\definecolor{rubydarker}{RGB}{197, 0, 99}$ $\definecolor{purple}{RGB}{56, 6, 92}$ $\definecolor{cardinaldarker}{RGB}{97, 0, 36}$ $\definecolor{ceruleandarker}{RGB}{0, 113, 140}$ $\definecolor{amberlighter}{RGB}{240, 191, 79}$ $\definecolor{amberbrighter}{RGB}{245, 242, 88}$ $\definecolor{onyx}{RGB}{15, 15, 15}$
Table of contents
Introduction & Motivation
Mesoscopic simulation techniques &
Multi-Particle Collision Dynamics (MPCD)
Active Nematic (AN-) MPCD
Modulated AN-MPCD
The Effect of Orientation on Active Baths
Applications of AN-MPCD
Conclusion
Active matter ranges across scales
Individual
"active" units
Local
energy injection from environment
Energy used to
locomote
Youtube: Wonders in the sky (2015)
Rivas D,
et al.
, Soft Matter, 2020
Microtubule bundle systems are active nematics
Rivas D,
et al.
, Soft Matter, 2020
Active
Nematic
Microtubule bundle systems are active nematics
Rivas D,
et al.
, Soft Matter, 2020
+1/2
-1/2
Mesoscale active matter has seen rapid recent progress
Thijssen K, Khaladj D,
et al.
, PNAS, 2021
Drechsler M,
et al.
, Mol Biol Cell, 2020
Ray S,
et al.
, Phys. Rev. Lett., 2023
Table of contents
Introduction & Motivation
Mesoscopic simulation techniques &
Multi-Particle Collision Dynamics (MPCD)
Active Nematic (AN-) MPCD
Modulated AN-MPCD
The Effect of Orientation on Active Baths
Applications of AN-MPCD
Conclusion
Active matter simulation methods exist across scales
Microscopic
Vliegenthart G,
et al.
, Sci. Adv., 2020
Macroscopic
Sokolov A,
et al.
, Phys. Rev. X, 2019
Mesoscale methods for this subset of active systems are limited
Our requirements:
Includes hydrodynamic interactions
Suitable for complex geometries & boundaries
Moderate Peclet number
Suitable for wide variety of active systems
MD
MD
DPD
DPD
MPCD
MPCD
LB
LB
Stokesian Dyn.
Stokesian Dyn.
Langevin Dyn.
Langevin Dyn.
What is Multi-Particle Collision Dynamics (MPCD)?
Particle $i$ has:
Position $\vec x_i$
Velocity $\vec v_i$
Mass $m_i$
Cell $C$ has:
Population $\rho_C$
CoM velocity $\vec v_{CM}$
Moment of intertia $I_C$
Streaming: $\vec{x}_i(t+\delta t) = \vec{x}_i(t) + \vec{v}_i(t)\delta t$
Collision:
$\vec{v}_i(t+\delta t) = \vec{v}_{CM}(t) + \vec\Xi_i(\vec{r}_\mathrm{CM}, t)$
$\vec{v}_i(t+\delta t) = \vec{v}_{CM}(t) + \textcolor{crimson}{\vec\Xi_i(\vec{r}_\mathrm{CM}, t)}$
Malevanets A, Kapral R, J. Chem. Phys., 1999
The collision operator controls the material properties
A collision operator $\textcolor{crimson}{\vec \Xi_C}$ acting on cell $C$ must:
Include some stochasticity
Respect conservation laws (linear momentum, etc)
Exchange particle properties (velocities, etc)
Angular momentum conserving Andersen collision operator:
$ \color{crimson}{\Xi_i^{A}} $
$ = \color{cerulean}\underline{\color{black}\vec\xi_i(t) } $
$ - \color{crimson}\underline{\color{black}\langle \vec\xi\rangle_{N_C} } $
$ + \color{amber}\underline{\color{black}{(I_C^{-1}\cdot \delta L_C ) \times \vec{r}_i}} $
where $\delta L_C$ is the angular momentum change
Noguchi H, Kikuchi N, Gompper G, Euro. Phys. Lett., 2007
François de Tournemire
Modifying collision operators simulates new materials
Particle $i$ has:
Position $\vec x_i$
Velocity $\vec v_i$
Mass $m_i$
Orientation $\vec u_i$
Cell $C$ has:
Population $\rho_C$
CoM velocity $\vec v_{CM}$
Moment of inertia $I_C$
Local director $\vec n_C$
Velocity collision: $\vec{v}_i(t+\delta t) = \vec{v}_{CM}(t) + \textcolor{crimson}{\vec\Xi_i(\vec{r}_\mathrm{CM}, t)}$
Orientation collision: $\vec{u}_i(t+\delta t) = \vec{n}_C(t) + \textcolor{cerulean}{\vec{\eta}_i(t)}$
$\textcolor{cerulean}{\vec{\eta}_i}$ orientation drawn from a Maier-Saupe distribution
\[ \begin{align*} \textcolor{crimson}{\Xi_i^{N}} &= \textcolor{crimson}{\Xi_i^{A}} + (I_C^{-1}\cdot \delta \mathcal{L}_C) \times \vec{r}_i \end{align*} \]
Shendruk T, Yeomans J, Soft Matter 2015
Simple changes to collision operators give nematic behaviour
Shendruk T, Yeomans J, Soft Matter 2015
Table of contents
Introduction & Motivation
Mesoscopic simulation techniques &
Multi-Particle Collision Dynamics (MPCD)
Active Nematic (AN-) MPCD
Modulated AN-MPCD
The Effect of Orientation on Active Baths
Applications of AN-MPCD
Conclusion
Local force dipoles are necessary for an active-nematic
Rivas D,
et al.
, Soft Matter, 2020
A planar collision rule induces local force dipoles
$\Xi_i^\mathrm{Active} = \Xi_i^{N}$
${ + \alpha_C \delta t \left( \frac{\kappa_i}{m_i} - \langle \frac{\kappa_j}{m_j} \rangle_C \right) \vec{n}_C } ; \quad \alpha_C = \sum_i^{\rho_C}\alpha_i $
$\textcolor{saphire}{ = \alpha_C^\mathrm{P}}$
Cellular activity $\alpha_C$ - Local force magnitude
Kozhukhov T
, Shendruk T, Sci. Adv., 2022
Activity magnitude changes algorithm regime
$\alpha < \alpha_\text{eq} = 10^{-3}$
$10^{-3} = \alpha_\text{eq} < \alpha < \alpha_\text{turb} = 2.5\times 10^{-2}$
$\alpha > \alpha_\text{turb} = 2.5\times 10^{-2}$
Kozhukhov T
, Shendruk T, Sci. Adv., 2022
Active-Nematic (AN-) MPCD Reproduces Active Turbulence
Rivas D,
et al.
, Soft Matter, 2020
Kozhukhov T
, Shendruk T, Sci. Adv., 2022
AN-MPCD turbulence begins from high bend walls
Thampi S, Golestanian R, Yeomans J, Euro. Phys. Lett., 2014
AN-MPCD succesfully reproduces active turbulence
$\ell_d = \rho_d^{-1/2}$; Theory: $\ell_d \propto \alpha^{-1/2}$
Theory: $v \propto \alpha^{1/2}$
For $\alpha > \alpha_\text{turb} = 2.5\times 10^{-2}$
Kozhukhov T
, Shendruk T, Sci. Adv., 2022
Active particle model results in density fluctuations
Kozhukhov T
, Shendruk T, Sci. Adv., 2022
Activity accumulates particles and widens distributions
Suggests an upper limit for effective turbulence regime of $\alpha_\dagger$
Kozhukhov T
, Shendruk T, Sci. Adv., 2022
Summary on AN-MPCD
A simple planar collision rule applies a force dipole
Built-in thermostat sets a minimum activity for turbulence
Within the turbulence regime, active turbulence scales per theoretical expectations
$\alpha > \alpha_\text{turb} = 2.5\times 10^{-2}$
However has large density fluctuations, common to active particle models
This is problematic for simulation of solutes
Table of contents
Introduction & Motivation
Mesoscopic simulation techniques &
Multi-Particle Collision Dynamics (MPCD)
Active Nematic (AN-) MPCD
Modulated AN-MPCD
The Effect of Orientation on Active Baths
Applications of AN-MPCD
Conclusion
Strategy: Modulate local activity
$\Xi_i^{Active} = \Xi_i^{N}+ {\alpha_C} \delta t \left( \frac{\kappa_i}{m_i} - \langle \frac{\kappa_j}{m_j} \rangle_C \right) \vec{n}_C $
Particle-Carried (Original)
: $\alpha_C^\mathrm{P} = \alpha \rho_C$
Cell-Carried
: $\alpha_C^\mathrm{C} = \alpha$
$\mathcal{S}_C(\rho_C; \sigma_p, \sigma_w) = \frac{1}{2} \left( 1 - \tanh \left( \frac{\rho_C - \av{\rho_C} \left( 1 + \sigma_p \right)}{\av{\rho_C} \sigma_w} \right) \right)$
Modulated Cell-Carried
: $\alpha_C^\mathrm{MC} (\rho_C) = \alpha_C^\mathrm{C} \mathcal{S}_C(\rho_C)$
Modulated Particle-Carried
: $\alpha_C^\mathrm{MP} (\rho_C) = \alpha_C^\mathrm{P} \mathcal{S}_C(\rho_C)$
Kozhukhov T
, Shendruk T, Sci. Adv., 2022
Kozhukhov T
, Loewe B, Shendruk T,
in review
(arXiv:2401.17777)
Particle Carried
Cell Carried
Mod. Part.
($\sigma_p=0.4, \sigma_w=0.5$)
Mod. Cell
($\sigma_p=0.4, \sigma_w=0.5$)
$\alpha = 0.1$
Kozhukhov T
, Loewe B, Shendruk T,
in review
(arXiv:2401.17777)
Particle Carried
Cell Carried
Mod. Part.
($\sigma_p=0.4, \sigma_w=0.5$)
Mod. Cell
($\sigma_p=0.4, \sigma_w=0.5$)
$\alpha = 0.1$
Kozhukhov T
, Loewe B, Shendruk T,
in review
(arXiv:2401.17777)
Modulated AN-MPCD reproduces active turbulence
$\ell_d = \rho_d^{-1/2}$; Theory: $\ell_d \propto \alpha^{-1/2}$
Theory: $v \propto \alpha^{1/2}$
Kozhukhov T
, Loewe B, Shendruk T,
in review
(arXiv:2401.17777)
Modulation results in improved density distributions
Kozhukhov T
, Loewe B, Shendruk T,
in review
(arXiv:2401.17777)
Modulations reduce density-induced drift
Fick's law: Density-induced drift $\propto \left| \nabla \rho \right|$
$\alpha=0.1$
Kozhukhov T
, Loewe B, Shendruk T,
in review
(arXiv:2401.17777)
Giant number fluctuation analysis reveal algorithm regimes
$\sigma_{N_C}=A\langle N_C \rangle^\nu$
$A=\sigma_{N_C}|_{\langle N_C \rangle=1}$
Kozhukhov T
, Loewe B, Shendruk T,
in review
(arXiv:2401.17777)
Summary on modulated AN-MPCD
Sigmoidal modulation of cellular activity reduces density fluctuations
Density fluctuations are exchanged for active force fluctuations
Active turbulence still scales per theoretical expectations
Modulated variants have altered turbulence regimes
Density induced drift effects on solutes are minimised
Kozhukhov T
, Loewe B, Shendruk T,
in review
(arXiv:2401.17777)
Table of contents
Introduction & Motivation
Mesoscopic simulation techniques &
Multi-Particle Collision Dynamics (MPCD)
Active Nematic (AN-) MPCD
Modulated AN-MPCD
The Effect of Orientation on Active Baths
Further Applications of AN-MPCD
Conclusion
Colloids in oriented active baths have yet to be explored
Colloids in active baths have been studied
Effect of orientation has not
Colloids are known to have companion defects
What interplay is there between defects and colloidal motility?
Wu X, Libchaber A, Phys. Rev. Lett., 2000
Topology results in colloidal companion defects
Activity number: $A = R_C / \ell_\alpha = 0.27$
Activity number: $A = R_C / \ell_\alpha = 1.18$
Activity number: $A = R_C / \ell_\alpha = 7.34$
Sigmoidal Av.
Kozhukhov T
, Loewe B, Thijssen K, Shendruk T,
in prep.
Colloids have a short ballistic regime before diffusing
\[ \begin{align*} \langle \Delta r^2(t) \rangle &= 2dDt + 2 v_0^2 \tau_r t \\ &\quad- 2 v_0^2 \tau_r^2 \left( 1 - e^{-t/\tau_r} \right) \end{align*} \]
$\langle \Delta r^2(t) \rangle = v_0^2t^2 + 2dDt; \quad t << \tau_r$
$\langle \Delta r^2(t) \rangle = 2dD_\mathrm{eff}t; \quad t >> \tau_r$
Kozhukhov T
, Loewe B, Thijssen K, Shendruk T,
in prep.
Zottl A, Stark H, J. Phys.: Condens. Matter, 2016
Interplay of anchoring and activity results in critically enhanced motility
$A^* \simeq 2$
Kozhukhov T
, Loewe B, Thijssen K, Shendruk T,
in prep.
No coherent flow in colloidal reference frame past critical activity
$A = 0.27$
$A = 1.18$
$A = 2.45$
$A = 3.54$
$A = 7.34$
Kozhukhov T
, Loewe B, Thijssen K, Shendruk T,
in prep.
Defects cause symmetry breaking in the colloid
$A = 0.27$
$A = 1.18$
$A = 2.45$
$A = 3.54$
$A = 7.34$
Kozhukhov T
, Loewe B, Thijssen K, Shendruk T,
in prep.
Activity controls the location of defects near the colloid
Kozhukhov T
, Loewe B, Thijssen K, Shendruk T,
in prep.
Defects have well-defined distribution peaks below critical activity
+1/2 defects
-1/2 defects
Kozhukhov T
, Loewe B, Thijssen K, Shendruk T,
in prep.
Activity causes companion defects to move closer to the colloid
Passive theory: $\langle r \rangle - R_\mathrm{C} \sim R_\mathrm{C}$
Kozhukhov T
, Loewe B, Thijssen K, Shendruk T,
in prep.
Number of nearby defects control colloid motion
$\vec{r}_d$: Vector to nearest defect
$\vec{u}$: Colloid velocity
Kozhukhov T
, Loewe B, Thijssen K, Shendruk T,
in prep.
Summary
Oriented active baths result in non-monotonic diffusion
Diffusion is closely linked to surrounding topological defects
One nearby defect results in more directed motion
Kozhukhov T
, Loewe B, Thijssen K, Shendruk T,
in prep.
Table of contents
Introduction & Motivation
Mesoscopic simulation techniques &
Multi-Particle Collision Dynamics (MPCD)
Active Nematic (AN-) MPCD
Modulated AN-MPCD
The Effect of Orientation on Active Baths
Applications of AN-MPCD
Conclusion
Applications of mesoscale AN-MPCD
Louise Head
Active Av.
D.P.Rivas,
L.C.Head
, D.H.Reich, T.N.Shendruk, R.L.Leheny,
in prep.
, 2024
Applications of mesoscale AN-MPCD
Zahra Valei
Sigmoidal Sum
Valei Z
, Baziei O, Loewe B, Shendruk T,
in prep.
, 2024
Applications of mesoscale AN-MPCD
Ryan Keogh
Active Av.
Keogh R
,
Kozhukhov T
,
et al.
, Phys. Rev. Lett. (accepted), 2024
Applications of mesoscale AN-MPCD
Kira Koch
Mark Curtis-Rose
Sigmoidal Av.
Applications of mesoscale AN-MPCD
Benjamín Loewe
Humberto Híjar
Loewe B
, Shendruk T, NJP 2022
Active Sum
Related:
Marcias-Duran E,
et al.
, Soft Matter, 2023
Summary
A force dipole reproduces active turbulence for sufficient activity
$\alpha > \alpha_\text{turb} \simeq 2.5\times 10^{-2}$
Density dependent activity modulation reduces density fluctuations
Colloids have non-monotonic diffusion in oriented active baths
AN-MPCD provides a strong framework to simulate out of equilibrium mesoscale systems
t.kozhukhov@sms.ed.ac.uk
View these slides online at
www.Kozhukhov.co.uk/
Acknowledgements
Tyler N. Shendruk
Benjamín Loewe
Ryan Keogh
Jack Paget
Louise Head
Humberto Híjar
Zahra Valei
François de Tournemire
Oleksandr Baziei
Kira Koch
Mark Curtis-Rose
Kristian Thijssen
Appendix Slides
Above is for Sig-Av. Sig-Sum very similar.
Chosen params are $\sigma_p=0.4, \sigma_w=0.5$